Note: A link to the associated YouTube tutorial can be found at ALevelMathsRevision.com/bridging-the-gap/

Section A: Linear Inequalities (From OCR 6993)

Q1, (Jun 2010, Q1)
Solve the inequality $3-x<4(x-1)$.

Q2, (Jun 2013, Q2)
Find the integers that satisfy the inequality $-7<3 x+1<12$.

Q3, (Jun 2014, Q1)

Solve the following.

$$
\begin{equation*}
-6<2 x-1<7 \tag{3}
\end{equation*}
$$

Q4, (Jun 2016, Q1)
Solve the inequality $1-2(x-3)>4 x$.

Q5, (Jun 2017, Q1)
Solve the inequality $-2<3 x+1<7$.

Q6, (Jun 2018, Q1)
Solve the inequality $2-x<1+3(x-2)$.

Section B: Quadratic Inequalities (From OCR 4751)
Q1 (OCR 4751, Jun 2006, Q6)

Solve the inequality $x^{2}+2 x<3$.

Q2 (OCR 4751. Jun 2009, Q4)
Solve the inequality $x(x-6)>0$.

Q3 (OCR 4751, Jan 2013, Q4)
Solve the inequality $5 x^{2}-28 x-12 \leqslant 0$.

Q4 (OCR 4751, Jun 2014, Q6)
Solve the inequality $3 x^{2}+10 x+3>0$.
(i) A rectangular tile has length $4 x \mathrm{~cm}$ and width $(x+3) \mathrm{cm}$. The area of the rectangle is less than $112 \mathrm{~cm}^{2}$. By writing down and solving an inequality, determine the set of possible values of x.
(ii) A second rectangular tile of length $4 y \mathrm{~cm}$ and width $(y+3) \mathrm{cm}$ has a rectangle of length $2 y \mathrm{~cm}$ and width $y \mathrm{~cm}$ removed from one corner as shown in the diagram.

Given that the perimeter of this tile is between 20 cm and 54 cm , determine the set of possible values of y.

Q6 (OCR 4721, Jan 2005, Q8)

The length of a rectangular children's playground is 10 m more than its width. The width of the playground is x metres.
(i) The perimeter of the playground is greater than 64 m . Write down a linear inequality in x.
(ii) The area of the playground is less than $299 \mathrm{~m}^{2}$. Show that $(x-13)(x+23)<0$.
(iii) By solving the inequalities in parts (i) and (ii), determine the set of possible values of x.

